SYLLABUS

OF

M. TECH (Hydraulics and Water Resources Engineering) IYEAR

(CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABI AND EVALUATION SCHEME

M. Tech. (Hydraulics and Water Resources Engineering)

(w.e.f. Batch 2020-21)

Semester – I

	S. Course Code No. Category No			F	Period	s	Credits	E	valuat	ion Sche	eme	
~ .			Name of Subject	L	LT		С	-	ontinu ssessm (CA)	ent	Exam ESE	Subject Total
								UE	ТА	Total		
1	DC	CE566	Open Channel Hydraulics	3	1	-	4	40	20	60	40	100
2	DC	CE556	Water Resources Systems Planning and Management	3	1	-	4	40	20	60	40	100
3	DC	CE557	Advanced Hydraulic Engineering	3	1	-	4	40	20	60	40	100
4	DE		Elective - I	3	1	-	4	40	20	60	40	100
5	DC	CE563	Experimental Method in Water Resources Engineering	-	-	3	2	-	-	60	40	100
	Total											500

Semester – II

				P	Period	ls	Credits	ŀ	Evalua	tion Sch	eme	
S. No.	Course Category	Code No	Name of Subject	L	Т	Р	C	-	ontinu ssessm (CA)	ent	EXAM ESE	Subject Total
								UE	TA	Total		
1	DC	CE565	Applied Hydrology	3	1	-	4	40	20	60	40	100
2	DC	CE552	Research Methodology	3	1	-	4	40	20	60	40	100
3	DC	CE568	Climate Change Impacts in Water Resources Engineering	3	1	-	4	40	20	60	40	100
4	DC	CE572	Research Paper Presentation and Discussion/Seminar	-	-	-	4	-	-	60	40	100
5	DC	CE567	Computer Methods in Hydraulics and Hydrology	-	-	3	2	-	-	60	40	100
			Total				18					500

TA- Teacher Assessment; **ESE** – End Semester Examination; **CT-** Cumulative Test. Note: Duration of ESE shall be 03 (Three) hours per subject

M. Tech (Hydraulics and Water Resources Engineering)

List of the Elective Paper:

<u>Elective – I</u>

CE555	Mathematics and Statistics for Hydraulic Engineering
CE558	Modeling Simulation and Optimization
CE560	Advanced Numerical Analysis
CE561	Flood and Drought

<u>Elective – II</u>

CE660	Remote Sensing and GIS in Water Resources Engineering
CE661	Hydro Power Engineering
CE662	Advanced Irrigation Engineering

<u>Elective – III</u>

CE664	Fluvial Hydraulics
CE665	Application of Soft Computing Technique in Hydrology
CE666	River Engineering

Elective – IV

CE668	Hydraulic Structures
CE669	Watershed Management
CE670	Earth and rock fill Dams

TA- Teacher Assessment; ESE- End Semester Examination; CT- Cumulative Test Note: Duration of ESE shall be 03 (Three) hours per subject.

Effective from Session:	Effective from Session: 2016-17											
Course Code	CE566	Title of the Course	Open Channel Hydraulics	L	Т	Р	С					
Year	1 st	Semester	1 st	3	1	0	4					
Pre-Requisite	NIL	Co-requisite	NIL									
Course Objectives	To cal	culate the flow depth	and discharge for use in canal design and other hyd	lrauli	c struc	tures.						

	Course Outcomes								
CO1	Students will learn the type of flow, Different types of equation, Types of Channels and Discharge Calculation.								
CO2	Students will learn about the gradually varied flow function and GVF profiles and GVF computations.								
CO3	Students will learn about the various type of jump in sloping and rectangular channels and effect on hydraulic structures								
CO4	The learner will learn about SPH simulations, unsteady flow, surges, surge tank, water hammer, St. Venant equations,								
	Hydraulic flood routing								
CO5	To learn the Design of canals, Theories of design, apron design, design of spillway, design of labyrinth spillway								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Uniform Flow	Uniform flow, Manning's equation, Chezy;s method ,most efficient sections ,non rectangular channels, flow depth and discharge calculation.	08hrs	CO1						
2	Gradually Varied Flow	Gradually varied flow functions, standard tables, governing differential equations, Bressi's method, GVF profiles, GVF computations	08hrs	CO2						
3	Rapidly Varied Flow	Hydraulic jump in sloping and rectangular channels, non-rectangular channels, overflow spillway, eddi formation, effect on hydraulic structures	08hrs	CO3						
4	Unsteady Flow	SPH simulations, unsteady flow, surges, surge tank, water hammer, St. Venant equations, Hydraulic flood routing.	08hrs	CO4						
5	Ground Water Hydrology	Design of canals, Theories of design, apron design, design of spillway, design of labyrinth spillway.	08hrs	CO5						
Refere	ence Books:									
K	K Subramanya "open channel flow", McGraw Hill.; 7th Edition 2012									
V	T Chow "onen cho	unal hydraulias" McGrow Hill Education: 2 rd Edition 1081								

V T Chow, "open channel hydraulics", McGraw Hill Education; 3rd Edition 1981

F.M.White "Fluid Mechanics ", Mc-Graw Hill Publications,1st Edition Reprint 2007

e-Learning Source:

https://nptel.ac.in/courses/105105105/

https://nptel.ac.in/downloads/105105104/

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	2	1	1	2	2	1	1	1	2	1	1	1
CO2	2	1	2	2	1	1	2	1	1	2	2	1	1	1
CO3	1	1	1	2	2	2	1	1	2	2	1	1	1	1
CO4	1	2	2	1	1	1	2	1	1	1	2	1	1	1
CO5	1	1	1	1	2	2	1	1	2	1	2	2	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session:	2016-17						
Course Code	(Paper 1) Title of the Course		Water Resources Systems Planning and Management	L	Т	Р	С
Year	1 st	Semester	1 st	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives	and I To un and 3 To u Progr To un Contri To u	Development, Nature of inderstand the Principles Socio-Economic Analys inderstand Linear Pro ramming, Optimization inderstand the Surface W rol, Reservoir Operation inderstand concept of O	Systems Analysis in Water Resources Engineerin Water Resources Systems and Socio Economic of of Engineering Economy, Capital, Economic and is gramming Models, Simplex Method, Sensit Techniques, Simulation and Multi Objective Op Vater Storage Requirements, Storage Capacity, H is, Irrigation and Planning of an Irrigation Syste Groundwater management, Conjunctive Use of e and Distribution Systems.	Chara d Fina ivity timiz lydroj em.	Analy ation.	ics Evalua ysis, I and F	ution Dual lood

	Course Outcomes								
CO1	Students will be able to explain the principles of system analysis and nature of water resources system								
CO2	Students will be able to understand the engineering economy and able to understand the financial evaluation								
CO3	Students will be able to understand Linear Programming Models and methods of analysis								
CO4	Students will be able to understand the Requirements of Surface Water Storage ,Hydropower and flood control								
CO5	Students will be able to understand Groundwater management, Conjunctive Use of Water Resources and design of water								
COS	conveyance and distribution systems.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	1 Introduction General Principles of Systems Analysis to Problems in Water Resources 08hrs 1 Introduction Engineering, Objectives of Water Resources Planning and Development, Nature of Water Resources Systems, Socio Economic Characteristics. CO1							
Economic AnalysisPrinciples of Engineering Economy, Capital, Interest and Interest Rates.08hrs2of Water Resources SystemTime Value of Money, Depreciation, Benefit Cost Evaluation, Discounting Techniques, Economic and Financial Evaluation, Socio-Economic Analysis.CO2								
3	3 Methods of Systems Analysis Linear Programming Models, Simplex Method, Sensitivity Analysis, Dual Programming, Dynamic Programming Models, Classical Optimization Techniques, Gradient Techniques, Stochastic Programming, Simulation, Search Techniques, Multi Objective Optimization.							
4	4 Water Quantity Management Surface Water Storage Requirements, Storage Capacity and Yield, , Water 08hrs Allocations for Water Supply, Hydropower and Flood Control, Reservoir Operations, Irrigation , Planning of an Irrigation System, Irrigation CO4							
5	5Design of SystemsGroundwater management, Conjunctive Use of Surface and Subsurface Water Resources, Reservoir Design, Design of Water Conveyance and Distribution Systems.O8hrs							
		Reference Books:						
C	haturvedi, M.C. "Water I	Resources Systems Planning and Management", Tata McGraw Hill Pub. Co., N	Delhi.					
Н	Hall. W.A. and Dracup, J.A. "Water Resources Systems", Tata McGraw Hill Pub. N Delhi.							
Ja	James, L.D. and Lee "Economics of Water Resources Planning", McGraw Hill Inc. N York.							
Kuiper, E. "Water Resources Development, Planning, Engineering and Economics", Buttersworth, London.								
B	Biswas, A.K. "Systems Approach to Water Management", McGraw Hill Inc. N York.							
	e-Learning Source:							
ht	tps://nptel.ac.in/courses/							

PO- PSO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS01 CO 2 1 0 0 0 1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0 1 0 2 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Course Articulation Matrix: (Ma									ith POs a	and PSOs	;)		
CO1 2 1 0 0 0 0 1 0 2 1 0 0 1 CO2 2 1 0 0 1 0 </th <th>PSO</th> <th>PO1</th> <th>PO2</th> <th>PO3</th> <th>PO4</th> <th>PO5</th> <th>PO6</th> <th>PO7</th> <th>PO8</th> <th>PO9</th> <th>PO10</th> <th>PO11</th> <th>PO12</th> <th>PSO1</th> <th>PSO2</th>	PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO2 2 1 0 0 1 0 0 0 0 0 3 1 1 CO3 1 1 3 2 0 0 0 0 1 0 2 0 CO4 2 2 0 0 0 2 0 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< th=""><th>CO</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	CO														
CO3 1 1 3 2 0 0 0 1 0 2 0 CO4 2 2 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 2 0 1 2 2 0 1 2 1 0 1 2 2 1 0 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 </th <th>CO1</th> <th>2</th> <th>1</th> <th>0</th> <th>0</th> <th>0</th> <th>0</th> <th>1</th> <th>0</th> <th>2</th> <th>1</th> <th>0</th> <th>0</th> <th></th> <th></th>	CO1	2	1	0	0	0	0	1	0	2	1	0	0		
CO4 2 2 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 1 2 1 0 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	CO2	2	1	0	0	1	0	0	0	0	0	3	1		
CO5 2 2 3 1 0 0 2 0 1 0 1 2	CO3	1	1	3	2	0	0	0	0	1	0	2	0		
	CO4	CO4 2 2 0 0 0 0 2							0	2	0	0	2		
1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation	CO5	2	2	3	1	0	0	2	0	1	0	1	2		
			1-	Low Co	orrelatio	on; 2- M	Ioderate	e Correl	lation; 3	- Substa	antial Co	rrelation			
Name & Sign of Program Coordinator Sign & Seal of HoD											Sian	e Cool o	fUad		

Effective from Session: 2016-17 Title of the С CE557 Advanced Hydraulic Engineering L Т P **Course Code** Course Year 4 1st Semester 1st 3 1 0 **Pre-Requisite Co-requisite Course Objectives** To understand the hydraulic engineering principle in various problems of practical world •

	Course Outcomes								
CO1	Students are able to understand basic concept of properties of fluid and its application								
CO2	Students will learn about basic principle of Gradually Varied flow (GVF), Channel Contractions and its applications								
CO3	To apply dimensional analysis to predict physical parameters of model and prototype. To learn the Navies Stokes Equation, Bernoulli's and Euler's equation and its applications.								
CO4	To understand the Finite element method, application to potential flow problems, and application to transient problems.								
CO5	To understand the concept of Stream function, velocity potential, and Flow dynamics.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Fundamentals of Fluid Flow	Fluid properties, Forces on immersed bodies, buoyancy, meta centre, flow 08hrs measurement, shear and normal forces, lift and drag force COI						
2	2 Free Surface Free surface equation, governing principles, flow over the hump, width 08hrs CO2							
3	3 Dimensional Analysis Dimensional analysis and similitude, Buckingham pi theorem, similarity laws, 08hrs laminar and turbulent flows, navier stokes equation, Bernaulli's and eulers equation CO3							
4	4 Finite Element Method Finite element method theory, derivation, application to potential flow problems, 08hrs source sink, application to transient problems, shape functions CO4							
5	Potential Flow Theory	Stream function, velocity potential, Gama and beta function, application to seepage problems, flow dynamics, Darcy's law. Ground water flow	08hrs	CO5				
Refere	ence Books:							
	A.KJain "Fluid	Mechanics ", Nem Chand & Bros.; 7th Edition 2012						
	Modi and seth, "	Fluid Mechanics", McGraw Hill Education; 3rd Edition 20						
F.M.White "Fluid Mechanics", Mc-Graw Hill Publications, 1st Edition Reprint 2007								
e-Learning Source:								
	https://nptel.ac.in/courses/105105105/							
	https://nptel.ac.in	/downloads/105105104/						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO CO1	2	3	2	3	2	2	1	3	2	3	2	1	2	2
CO2	2	2	2	2	3	2	3	2	2	2	1	1	2	2
CO3	2	3	1	3	2	3	3	2	3	1	2	2	2	2
CO4	3	2	2	2	1	2	3	2	2	2	1	1	2	2
CO5	1	2	2	2	2	2	2	2	1	2	1	1	2	2

1- Low Correlation; 2- Moderate Correlation; 3- 1Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD
Name & Sign of Flogram Cool unator	Sign & Sear of HoD

Effective from Session:	2016-17							
Course Code	CE555	Title of the Course	Mathematics and Statistics for Hydraulic Engineering		Т	Р	С	
Year	1 st	Semester	1 st	3	1	0	4	
Pre-Requisite	NIL Co-requisite		NIL					
Course Objectives	NIL Co-requisite NIL • To understand the application of Multiple Integration, Differential Equation and Conform Mapping in Hydraulic and Water Resources Engineering • To learn about the application of Distributions, Measures of central tendency, Fractals ar application to hydraulic engineering. • To learn about the application of Distributions, Measures of central tendency, Fractals ar application to hydraulic engineering. • To learn about the applications of Furrier transform and Integrals in hydraulic and water resource engineering • To learn about the Applications of Furrier transform and Integrals in hydraulic and water resource engineering.							

	Course Outcomes							
CO1	To understand the basic concept of Multiple Integration, Differential Equation and Conformal Mapping							
CO2	To understand the application of Eigen Value and Eigen Vectors and Algorithm in Hydraulic and Water Resources Engineering							
CO3	To learn about the application of Distributions, CDF and PDF, Measures of central tendency, Fractals and application to hydraulic engineering.							
CO4	To learn about the applications of Furrier transform and Integrals in water resources engineering							
CO5	To understand the basic concept of Mathematical modeling in water resources engineering							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	1CalculusMultiple integration, spherical coordinate systems, ordinary differential equations, partial differential equations, polar coordinates, conformal mapping.							
2 Linear Algebra Eigen values and eigen vectors, singular value decomposition, orthogonal decomposition, crouts and do littel algorithm, solution of linear equations.								
3 Probability and Distributions, CDF and PDF, measures of central tendency, application to 08hrs CO3 hydraulic engineering, Fractals.								
4	Fourier Transform and Integrals	Fourier and integral transform, Fourier sine series, cosine series, application to decomposition problems.	08hrs	CO4				
5	5 Mathematical Modelling Numerical methods, Eulers method, Newton's Raphsons method, Gauss 08hrs CO5							
		Reference Books:						
	Shanti Narayan: A	Fext Book of Martices, S. Chand & Co.						
	Thomas/Finny: Calo	culus and Analytical Geometry, Narosa Pub.						
	Piskunov, M. Differential and Integral Calculus, Moscow Peace Pub.							
	Jaggi and Mathur: Advanced Engineering Mathematics, Khanna Pub.							
	e-Learning Source:							
	https://nptel.ac.in/courses/105105105/							
	https://nptel.ac.in/do	ownloads/105105104/						

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	1	1	2	1	2	1	2	1	0	0
CO2	2	1	2	1	1	1	1	1	1	1	2	2	0	0
CO3	1	3	2	2	2	1	2	1	1	2	0	2	0	0
CO4	3	2	0	2	1	2	2	1	1	2	2	1	0	0
CO5	2	2	2	2	2	2	1	1	2	1	3	2	0	0

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17									
Course Code	CE565	Title of the Course	Applied Hydrology	L	Т	Р	С		
Year	1 st	Semester	2 nd	-	-	3	2		
Pre-Requisite	NIL	Co-requisite	NIL						
Course Objectives	• To analyse the water budget and plan strategies for water conservation and management								

	Course Outcomes					
CO1	To understand 'Hydrologic cycle, systems concept, hydrologic model classification; Reynold's Transport					
	Theorem.					
CO2	To understand the concept of Thunderstorm Cell model, IDF relationships and measurement of evaporation,					
	energy balance method, ,					
CO3	To understand the concept of Hortonian and saturation overland flow, stream flow hydrographs and Unit					
	Hydrograph concept					
CO4	To understand the concept of convolution equation; definition and limitations of a UH;					
CO5	To understand the basic concept of infiltration and its equation, Groundwater Hydrology, Darcy's law,					

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Fundamentals of Hydrology	Hydrologic cycle, systems concept, hydrologic model classification; Reynold's Transport Theorem, continuity, momentum, and energy equations; Atmospheric hydrology: atmospheric circulation, water vapor, formation and forms of precipitation, precipitable water, monsoon characteristics in India.	08hrs	CO1				
2	Methods of Estimating Rainfall Losses	Thunderstorm Cell model, IDF relationships; factors affecting evaporation, estimation and measurement of evaporation, energy balance method, aerodynamic method, Priestley Taylor method, and pan evaporation; Surface Water: Catchment storage concept.	08hrs	CO2				
3	Runoff Estimation	Hortonian and saturation overland flow, stream flow hydrographs, base flow separation, index, ERH & DRH, algorithm for abstraction using Green Ampt equation, SCS method, overland and channel flow modeling, time area concepts, and stream networks; Unit Hydrograph: General hydrologic system model, response functions of a linear hydrologic systems and their interrelationships.	08hrs	CO3				
4	Unit Hydrograph	Convolution equation; definition and limitations of a UH; UH derivation from single and complex storms; UH optimization using regression, matrix, and LP methods; Synthetic unit hydrograph, S-Curve, IUH; Subsurface Water: Soil moisture, porosity, saturated and unsaturated flow.	08hrs	CO4				
5	Ground Water Hydrology	Richards' equation, infiltration, Horton's, Philip's, and Green Ampt methods, parameter estimation, ponding time concepts; Groundwater Hydrology: Occurrence of groundwater, aquifers & their properties, Darcy's law, permeability, transmissibility, stratification, confined groundwater flow	08hrs	CO5				
Reference Books:								
K subramanya "Engineerign Hydrology", McGraw Hill.; 7 th Edition 2012								
V T Chow , " <i>Apploed hydrology</i> ", McGraw Hill Education; 3 rd Edition 1981								
F.M.White "Fluid Mechanics", Mc-Graw Hill Publications,1st Edition Reprint 2007								
	e-Learning Source: http://nptel.ac.in/courses/105105105/							
	* *							
http://nptel.ac.in/downloads/105105104/								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	2	2	1	1	2	1	1	1	2	1	0	0
CO2	2	1	2	1	3	1	1	2	1	2	2	2	0	0
CO3	3	1	3	1	2	1	2	1	2	2	1	2	0	0
CO4	2	2	1	2	1	2	2	1	0	1	2	1	0	0
CO5	2	2	2	2	2	2	1	1	2	1	3	2	0	0

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2016-17									
Course Code	CE567	Title of the Course	Computer Methods in Hydraulics and Hydrology		Т	Р	С		
Year	1 st	Semester	2 nd	0	0	3	2		
Pre-Requisite	NIL	Co-requisite	NIL						
Course Objectives	 Stude hydro Stude 	ents will learn about the plogic statistics paramet	computer programming and computation with M Estimation of Unit hydrographs; lumped and dis er estimation. e Application of soft computing methods and	tribut	ed flo		0		

	Course Outcomes						
CO1	Students will be able to understand about the application of MATLABin Open channel flow for the Estimation of normal and critical depth etc.						
CO2	Students will be able to learn about the Estimation of Unit hydrographs; lumped and distributed flow routing; hydrologic statistics parameter estimation.						
CO3	Students will be able to learn about the Application of soft computing methods and GIS in Hydraulic and Hydrologic modeling.						

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO					
1	Exercise 1	Introduction to computer programming and computation with MATLAB. Open channel flow : Estimation of normal and critical depth; uniform flow computations; computation of water surface profile (WSP) gradually varied flow estimation using standard step and direct step methods,	08hrs	CO1					
2	Exercise 1	WSP in presence of hydraulic structures; unsteady flow Saint Venant equation, kinematic wave routing, diffusion routing, overland flow; steady and unsteady modeling using HECRAS.	08hrs	CO1					
3	Exercise 1	Closed conduit flow: Steady and unsteady state modeling; pipe network analysis; introduction to EPANET/Water CAD. Surface water hydrology:	08hrs	CO2					
4	Exercise 1	Estimation of Unit hydrographs; lumped and distributed flow routing; hydrologic statistics parameter estimation, time series analysis, frequency analysis, geo-statistics; hydrologic modeling using HECHMS.	08hrs	CO2					
5	Exercise 1	Groundwater hydrology: Solving groundwater flow equation saturated and unsaturated flow, Richards' equation, Green Ampt infiltration model; introduction to MODFLOW;	08hrs	CO3					
6	Exercise 1	Application of soft computing methods and GIS in Hydraulic and Hydrologic modeling. Laboratory: Programming exercises for the related topics.	08hrs	CO3					
Refere	Reference Books:								
C	Chow, V.T, Maidment, D.R, and Mays, L.W, Applied Hydrology, Tata McGraw Hill Edition, 2010.								
М	McCuen R.H, Hydrologic Analysis and Design, Prentice Hall Inc. New York, 2005								
Te	Terry Sturm, Open Channel Hydraulics, Tata McGraw Hill Pub., 2011.								
	Mujumdar, P.P. and D. Nagesh Kumar, Floods in a Changing Climate – Hydrologic Modeling, Cambridge University Press, New York, 2012.								
T	erry Sturm, "Open C	hannel Hydraulics", Tata McGraw Hill Pub, 2011.							

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	2	0	3	0	3	0	0	0	0	2	0	0	0	0
CO2	2	0	3	0	3	0	0	0	0	2	0	0	0	0
CO3	2	0	3	0	3	0	0	0	0	2	0	0	0	0

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation							
Name & Sign of Program Coordinator	Sign & Seal of HoD						
Name & Sign of Program Coordinator	Sign & Sear of HoD						